R UBIS: a bipolar-valued outranking method for the choice problem
نویسندگان
چکیده
منابع مشابه
R UBIS : a bipolar-valued outranking method for the choice problem
The main concern of this article is to present and motivate the Rubis method for tackling the choice problem in the context of multiple criteria decision aiding. Its genuine purpose is to help a decision maker to determine a single best decision alternative. Methodologically we focus on pairwise comparisons of these alternatives which lead to the concept of bipolar-valued outranking digraph. Th...
متن کاملRuBy : a bipolar-valued outranking method for the best choice decision problem
The main concern of this article is a detailed presentation of the RuBy methodology for the best choice problem in the context of multiple criteria decision aid. We focus more particularly on pairwise comparisons of decision objects which lead to the concept of bipolar-valued outranking digraph. The work is centred around a list of five pragmatic principles which are required in the context of ...
متن کاملExploitation of a bipolar-valued outranking relation for the choice of k best alternatives
This article presents the problem of the selection of k best alternatives in the context of multiple criteria decision aid. We situate ourselves in the context of pairwise comparisons of alternatives and the underlying bipolar-valued outranking digraph. We present three formulations for the best k-choice problem and detail how to solve two of them directly on the outranking digraph. Mots-Clefs....
متن کاملDisaggregation of Bipolar-Valued Outranking Relations
In this article, we tackle the problem of exploring the structure of the data which is underlying a bipolar-valued outranking relation. More precisely, we show how the performances of alternatives and weights related to criteria can be determined from three different formulations of the bipolar-valued outranking relations, which are given beforehand.
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: 4OR
سال: 2007
ISSN: 1619-4500,1614-2411
DOI: 10.1007/s10288-007-0045-5